(R)-C3-TUNEPHOS - CAS 301847-89-2

(R)-C3-TUNEPHOS is a chiral phosphine ligand for enantioselective synthesis with high yield and high enantioselective results.

Product Information

Canonical SMILES
C1COC2=C(C(=CC=C2)P(C3=CC=CC=C3)C4=CC=CC=C4)C5=C(C=CC=C5P(C6=CC=CC=C6)C7=CC=CC=C7)OC1
InChI
InChI=1S/C39H32O2P2/c1-5-16-30(17-6-1)42(31-18-7-2-8-19-31)36-26-13-24-34-38(36)39-35(41-29-15-28-40-34)25-14-27-37(39)43(32-20-9-3-10-21-32)33-22-11-4-12-23-33/h1-14,16-27H,15,28-29H2
InChI Key
GTIXSUJKFAATAE-UHFFFAOYSA-N
Purity
95%
MDL
MFCD06658115
Physical State
Solid
Appearance
White to off-white powder or crystals
Storage
Inert atmosphere. Room Temperature.
Melting Point
153-161°C(lit.)

Safety Information

Signal Word
Warning
Precautionary Statement
P261 - P305 - P351 - P338
Hazard Statements
H302 - H315 - H319 - H335

Reference Reading

1.Enantioselective carbonyl allylation, crotylation, and tert-prenylation of furan methanols and furfurals via iridium-catalyzed transfer hydrogenation.
Bechem B1, Patman RL, Hashmi AS, Krische MJ. J Org Chem. 2010 Mar 5;75(5):1795-8. doi: 10.1021/jo902697g.
5-Substituted-2-furan methanols 1a-c are subject to enantioselective carbonyl allylation, crotylation and tert-prenylation upon exposure to allyl acetate, alpha-methyl allyl acetate, or 1,1-dimethylallene in the presence of an ortho-cyclometalated iridium catalyst modified by (R)-Cl,MeO-BIPHEP, (R)-C3-TUNEPHOS, and (R)-C3-SEGPHOS, respectively. In the presence of 2-propanol, but under otherwise identical conditions, the corresponding substituted furfurals 2a-c are converted to identical products of allylation, crotylation, and tert-prenylation. Optically enriched products of carbonyl allylation, crotylation, and reverse prenylation 3b, 4b, and 5b were subjected to Achmatowicz rearrangement to furnish the corresponding gamma-hydroxy-beta-pyrones 6a-c, respectively, with negligible erosion of enantiomeric excess.
The molarity calculator equation

Mass (g) = Concentration (mol/L) × Volume (L) × Molecular Weight (g/mol)

The dilution calculator equation

Concentration (start) × Volume (start) = Concentration (final) × Volume (final)

This equation is commonly abbreviated as: C1V1 = C2V2

Related Products

USA
  • International:
  • US & Canada (Toll free):
  • Email:
  • Fax:
UK
  • Email:
Copyright © 2024 BOC Sciences. All rights reserved.